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Human and Artificial Neurons Page 4 of 56

» Neural networks have a long history which goes back to the first attempts to understand
how the human and mammal brain works and how/what we call intelligence is formed.
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Artificial Neural Networks Page 5 of 56

Each neuron 1s connected with other neurons via elementary structural and functional
units/links, known as synapses. It is estimated that there are 50-100 trillions of synapses.
These links mediate information between connected neurons.
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An Engineering Approach Page 6 of 56

1943: A milestone -- Warren McCulloch and Walter Pitts, developed a computational
model for the basic neuron.
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Engineering Applications Page 7 of 56
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Other Applications: Approximation Page 8 of 56

G/ = |
A Taylor Network A Fourier Network

F(f’;):a0+a1(33—330)+a2(:1:—:130)2+---+an(x_m0)“+...,

Bz} = Z(ai cos(izx) + b; sin(ix)).



Some Features of Neural Networks Page 9 of 56

A universal nonlinear approximator.
Adaptive learning: An ability to learn how to do tasks based on the trained data.

Selt-Organization: create its own organization or representation of the information

during learning time.
Real Time Operation
Fault Tolerance

Application: ANNSs are used when the domain of a problem 1s not entirely known.

Neural networks do not perform miracles. But if used sensibly they can produce some amazing results.
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Generic Computing Unit Page 12 of 56
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Feed-forward Neural Networks Page 14 of 56

‘ hidden layers
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Feed-forward ANNSs allow signals to travel on way only; from input to output. There is no

input layer -«

feedback loops(e.g., the output of any layer does not affect the same layer)
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An Example of NNs: Forward Propagation Page 16 of 56

" The inputs of the hidden layer are:
inH1 = i1XW1 + izXWZ + bl = (0.1x0.35 + 0.5%x0.15 + 0.1 =0.21
inHz = i1XW3 + izXW4, + b1 = 0.1x0.24+0.5%x04 4+ 0.1 =0.32

" The output of the hidden layer are:

outy; = —— = ——— = (,5523

1+e”"H1  1+e70:21
1 1
outy, = = = 0.5793

1+e~iMH2 14032
= Repeat the process for ﬁnding the inputs of the output layer and the outputs of the

output layer:
iNp; = Uty XWs + 0UtyyXWe + by = 0.5523%0.6 + 0.5793%0.25 + 0.5 = 0.9762
inoz = OUtH1XW7 + OU,tHsz8 + b2 = (0.5523X%0.55 + 0.5793%x0.6 + 0.5 = 1.1514

1 1
OULp1 = T =g, = [ao—0s76z — 0.7264
outy, = ——— = ———— = (0.7598

1+e~ 02 1+e~11514
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Backpropagation:
The goal of the backpropagation training 1s to update the weights so that the neural network
can learn and map the given input-output groups.



Basic Training Principle/Steps Page 18 of 56

1. We present the network with training examples, which consist of a pattern of activities
for the input units together with the desired pattern of activities for the output units.

2. We determine how closely the actual output of the network matches the desired
output.

3. We change the weight of each connection so that the network produces a better
approximation of the desired output.



A Training Example Page 19 of 56

0.1 —>»
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Calculating the forward path:

1 1
OUlo1 = T =g, = Tio—0s76z — 0.7264
outy, = ——— = ———— = 0.7598

1+e~m02  1+e~11514



A Training Example (cont’d) Page 20 of 56

Calculating the total errot:
Eroral = Z% (target — output)? = % (targetl — outyq)? + %(targetZ — outpy)?
Erotar =5 (0.2 — 0.7264)% + 2 (0.8 — 0.7598)2 = 0.1385 + 0.0008 = 0.1393

E,, = 0.1385

E,, = 0.0008



A Training Example (cont’d) Page 21 of 56

Calculating the backward pass and update weights:

Ws E, ="4(target-output)’

OUTy, Etoa=EoiTEo2

q&b

OUTy, o)
0O,

How much a change in wg affects the total error:

aETotal _ 0ETotal X aOUTOL X 0INp4

— Gradient Descent
6W5 60UT01 61N01 aW5




A Training Example (cont’d) Page 22 of 56

1 1
Etotar = > (targetop; — OUTp1)* + > (tatgety, — OUTp,)*

O0ETota 1
Soret = 2x 3 (targetoy — 0UTo)X(~1)

d0UT o4
dINp

1
1+e~No1

= OUTyp1(1 — OUTpq) because OUTyq =

Finally, IN01 = W5X0UTH1 + W6X0UTH2 + Bz

dINop;
S = 0UTy

Putting them all together:
9Erotal — _(targety, — OUTyy)XOUTy (1 — OUT 1) XOUTy,

aW5



A Training Example (cont’d) Page 23 of 56

OE oouUT ) . OE
—Total , 4 ——2 which can be written as —2tat
d0UT o, 1INy, 9Ny,

Alternatively, we have , aka 091

OEtotal
aW5

To decrease the error, We = Wg — X

we = wg —nx 2ELetal — 0.6 — 0.5x0.578 = 0.5711

ows
wg = 0.2197
ws = 0.5520
wg = 0.6021




A Training Example (cont’d) Page 24 of 56

E,;=Ys(target-output)’
Etow=Eo1TEo2

e E,,=Y(target-output)’
Etow=Eo1TEo2




A Training Example (cont’d) Page 25 of 56

OUTy;, E,,='4(target-output)”

OUTy, E,,=Y(target-output )’

OETotal — OETotal X 00UTH X 0INg4
aW1 60UTH1 61NH1 aW1

aEToml _ aEOl aEOZ

d0UTy, 00UTy, 0O0UTy,

OETotal ( dEp4 dEo; ) > d0UTp,4 > 0INg,
oW, d0UTy, | 00UTH./) ~ OINm, = 0w,



A Training Example (cont’d) Page 26 of 30

OETotal _ ( 0Eg;  90UTos , dINo, 0Egy , 00UToz . 3INoy )x 00UTH, . OINp
d0UTo, ~ 0INgp, ~ 00UTy,; 00UTp, = dINp, ~ 00UTy dINp4 dwq

ow,

00UTHy . 3Nk
61NH1 awl

2ETotal — (389 XWho) ) X

wi = 0.3493
wi = 0.1464
wi = 0.1997
w = 0.3987

*Check the matlab code for detail steps and calculations!!
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In machine learning, the delta rule is a gradient descent learning rule for updating the
welght of the inputs to artificial neurons in a single-layer neural network.

Awy; = a(t; — yi)g'(hy)x;
where

a 1s a small constant called learning rate
g(x) is the neuraon's activiation function

tj is the target output

h; is the weighted sum of the neuron's inputs
Yj 1s the catual output

X; 1s the 7th input
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* Deep learning: a neural network has more than two hidden layers.

e A multistage information-distillation operation.

Layer 1 Layer 2 Layer 3
representations representations representations

Layer 4
representations
(final output)

Original
input

OO~ W =20

Layer 4
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" Tens of thousands of machine learning algorithms
" Hundreds new every year

" Hvery machine learning algorithm has three components:
— Representation
— Evaluation

— Optimization
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= Decision trees

= Sets of rules / Logic programs

" [nstances

" Graphical models (Bayes/Markov nets)
®= Neural networks

" Support vector machines

" Model ensembles

= Htc.
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= Accuracy

" Squared error

" Likelihood

" Posterior probability
* Cost / Utility

" Margin

" Entropy

= Htc.
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" Combinatorial optimization

— E.g.: Greedy search
" Convex optimization

— E.g.: Gradient descent

* Constrained optimization

— E.g.: Linear programming



Types of Learning Page 33 of 56

" Supervised (inductive) learning
— Training data includes desired outputs

* Unsupervised learning

— Training data does not include desired outputs

" Semi-supervised learning

— Training data includes a few desired outputs

" Reinforcement learning

— Rewards from sequence of actions
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= Supervised learning ( {x, €ER%y, € R}_,
— Prediction

— Classification (discrete labels), Regression (real values)

* Unsupervised learning ( )
{x, € R,

— Clustering n=1
— Probability distribution estimation
— Finding association (in features)

— Dimension reduction

" Semi-supervised learning

" Reinforcement learning

— Decision making (robot, chess machine)



Learning System Model Page 35 of 56

Testing

Learning

Method

Input Samples

System

Training
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Hidden

Oulput A vtificial Intelligence:

@AQ Capable of human-like
@/ qualities

Reverse Engineering




Evolutionary Algorithm (EA) Page 38 of 56

EA attempts to simulate the process of evolution.
Understanding the system (e.g., human brain)

The driving force behind the creation/evolution
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Evolution of Human and Al Page 39 of 56
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History (Inheritance) Page 40 of 56

Charles Darwin: Natural Selection
- Huge lizards, strange birds and Giant Tortoises Galapagos Island.

The Discovery of Inheritance

Original (true) Generation (FO) Factors were inherited in
Parent a Parent b ) f h
TT sS
(tall) (small) palrs, one rrom cac parent
plant.
First Filial generation (F1)
Child Child . . .
Ts T T is dominant and S is

(tall) (tall) .
I egr €SS1ve

Second Filial generation (F2)
Grandchild a Grandchild b Grandchild ¢ Grandchild d
TT Ts sT ss
(tall) (tall) (tall) (small)



History (Chromosomes and DNA) Page 41 of 56

The Discovery of Chromosomes and DNA (1903)

Nucleus
Chromosome

Coiled DNA
molecule

DNA double helix
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GA: Artificial version of Biological Evolution, allowing the fittest to survive while killing
off the weakest.

** Stochastic optimization technique

¢ Ability to escape from local optimal solutions (Gradient methods do not have this
property.)
* The algorithm consists of:
a) coding the problem
b) generating an initial population
c) evaluating fitness

d) crossover (breeding) and

e) mutation
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Solve: max f(x), f(x) = 20 + 100x cos(4mx)e %* x € [0,1.5]

40

30

20

10




Distributions of Chromosomes
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Procedure of GA Page 45 of 56

= Selection: Selection of fit individuals for reproduction
= Crossover: Mating of selected individuals for reproduction

" Mutation: Introduction of new alleles into chromosomes in the population, to create
completely new solutions

Initialization of Individuals

1. New population is produced by mating the best
T Evaluation
individuals
ii. Over generations, desirable characteristics are SECEO O EAKENtS
spread throughout population
Crossover

111. Mutation 1s used to escape from a local minimum

Mutation
|




Coding and Generating an Initial Population Page 46 of 56

Generate randomly 1nitial population of N (=10) chromosomes. (required precision: 3
decimal points)
Note: Population size 2™; n=number of don’t care genes

decimal 0.000 - 1.500
binary | 00000000000 «~ 11111111111
chromosome | binary encoding | decimal value

1 00010010100 0.1085

o 11001100111 1.2010

3 11001101001 1.2025

T4 10100110001 0.9739

B 11001110111 1.2128

5 01101111101 0.6544

1 00000010110 0.0161

xg 11110100000 1.4304

6 10110001011 1.0398

10 00000011110 0.0220




Evaluation Fitness Page 47 of 56

Calculate fitness values for the chromosomes:

f(x) =20 + 100x cos(4mx)e %, i=12,..10

chromosome | binary encoding | decimal value | fitness value
xr1 00010010100 0.1085 21.8025
xo 11001100111 1.2010 11.1218
xr3 11001101001 1.2025 11.0231
T4 10100110001 0.9739 33.1448
7S 11001110111 1.2128 10.4288
e 01101111101 0.6544 13.6220
T7 00000010110 0.0161 21.5290
xrg 11110100000 1.4304 25.2480
xq 10110001011 1.0398 31.4024
10 00000011110 0.0220 22.0240
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= Crossover: Exchanges some genes of the two parents to create the genotypes of the
offspring
= Method: Select points along parents' chromosomes (randomly) and exchange genes

between these points
Note: In Simple Crossover , only one point is chosen. See Figure

& >

Chromosomes
crossover leading to
Lhesi Children with higher

chromosomes _
presented for cumulative fitness

crossover



Mutation Page 49 of 56

Introduces completely new alleles into a population of chromosomes Creates completely
new solutions (avoids stagnation)

Method: Select one or more genes in an individual at random and change their alleles
Note: Allele change itself can be random or deterministic fashion

AN

> Mutated gene
]
Chromosome Mutation leading to a
chosen for higher fitness of the

mutation chromosome
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Select N chromosomes in the next generation (t+1) from N chromosomes in the current
f(xi)
]1'21 f (xi)

generation (t). Compute the probability of x; being selected: P(x;) =

chromosome | binary encoding | decimal value | fitness value | p(x;)
x1 00010010100 0.1085 21.8025 0.1083
x5 11001100111 1.2010 11.1218 0.0552
x3 11001101001 1.2025 11.0231 0.0547
T4 10100110001 0.9739 33.1448 0.1646
x5 11001110111 1.2128 10.4288 0.0518
TG 01101111101 0.6544 13.6220 0.0677
x7 00000010110 0.0161 21.5290 0.1069
rsg 11110100000 1.4304 25.2480 0.1254
xg 10110001011 1.0398 31.4024 0.1560
10 00000011110 0.0220 22.0240 0.1094
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chromosome | binary encoding | decimal value | fithess value
1 00000011110 0.0220 22.0240
1) 00000011110 0.0220 22.0240
xr3 11001101001 1.2025 11.0231
x4 10100110001 0.9739 33.1448
5 10110001011 1.0398 31.4024
6 10110001011 1.0398 31.4024
xr7 10100110001 0.9739 33.1448
xrs 10110001011 1.0398 31.4024
xq 10100110001 0.9739 33.1448
10 00000010110 0.0161 21.5290




Generic Operation Page 52 of 56

Crossover: Exchange some genes of two parents

parent 1 1010011011

parent 2 0101110010
)

child 1 10100}|001o

Mutation: Exchange some child 2 01011171011

before 1010010010

N}
after 1110010010



After Genetic Operation Page 53 of 56

chromosome | binary encoding | decimal value | fithess value
x 00000001011 0.0081 20.7891
o 00000011110 0.0220 22.0240
x3 11001101001 1.2025 11.0231
10100110001 0.9739 33.1448
10110011110 1.0537 29.9967
10110001011 1.0398 31.4024
:137 10100110001 0.9739 33.1448
10110001011 1.0398 31.4024
10100110001 0.9739 33.1448



chromosome

After 16 Generations

binary encoding

decimal value

Page 54 of 56

fitness value

T
T2
T3
T4
T5
T6
T

T8
T9

10

01010010001
01011101011
01010010001
01010010001
01011011001
01011011001
01010101011
01011010001
01000011001
01010011001

0.4814
0.5474
0.4814
0.4814
0.5342
0.4873
0.5050
0.5283
0.3835
0.4873

37.8831
35.1638
37.8831
37.8831
36.6842
38.1542
38.3936
37.2136
24.1274
38.1542



Distributions of Chromosomes Page 55 of 56
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dhe End!!



