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Neural Networks
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Ø Neural networks have a long history which goes back to the first attempts to understand 
how the human and mammal brain works and how/what we call intelligence is formed.

Ø The human brain is composed of 1011 of these cells.



Each neuron is connected with other neurons via elementary structural and functional 
units/links, known as synapses. It is estimated that there are 50-100 trillions of synapses. 
These links mediate information between connected neurons.
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1943: A milestone -- Warren McCulloch and Walter Pitts, developed a computational 
model for the basic neuron.
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A Taylor Network                                  A Fourier Network



§ A universal nonlinear approximator.

§ Adaptive learning: An ability to learn how to do tasks based on the trained data.

§ Self-Organization: create its own organization or representation of the information 

during learning time.

§ Real Time Operation

§ Fault Tolerance

§ Application: ANNs are used when the domain of a problem is not entirely known.

Neural networks do not perform miracles. But if used sensibly they can produce some amazing results.
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The step function with threshold
𝑓 𝑥 = $1 𝑓𝑜𝑟 𝑥 ≥ 𝜃

0 𝑓𝑜𝑟 𝑥 < 𝜃

Sigmoid
𝑓 𝑥 = !

!"#!"#
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Feed-forward ANNs allow signals to travel on way only; from input to output. There is no 
feedback loops(e.g., the output of  any layer does not affect the same layer)
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§ The inputs of the hidden layer are: 
𝑖𝑛,- = 𝑖-×𝑤- + 𝑖.×𝑤. + 𝑏- = 0.1×0.35 + 0.5×0.15 + 0.1 = 0.21
𝑖𝑛,. = 𝑖-×𝑤/ + 𝑖.×𝑤0 + 𝑏- = 0.1×0.2 + 0.5×0.4 + 0.1 = 0.32
§ The output of the hidden layer are: 
𝑜𝑢𝑡,- =

-
-12!"#$% =

-
-12!&.(% = 0.5523

𝑜𝑢𝑡,. =
-

-12!"#$( =
-

-12!&.)( = 0.5793
§ Repeat the process for finding the inputs of the output layer and the outputs of the 
output layer:
𝑖𝑛3- = 𝑜𝑢𝑡,-×𝑤4 + 𝑜𝑢𝑡,.×𝑤5 + 𝑏. = 0.5523×0.6 + 0.5793×0.25 + 0.5 = 0.9762
𝑖𝑛3. = 𝑜𝑢𝑡,-×𝑤6 + 𝑜𝑢𝑡,.×𝑤7 + 𝑏. = 0.5523×0.55 + 0.5793×0.6 + 0.5 = 1.1514
𝑜𝑢𝑡3- =

-
-12!"#*%

= -
-12!&.+,-( = 0.7264

𝑜𝑢𝑡3. =
-

-12!"#*(
= -

-12!%.%.%/
= 0.7598
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Backpropagation: 
The goal of  the backpropagation training is to update the weights so that the neural network 
can learn and map the given input-output groups. 



1. We present the network with training examples, which consist of a pattern of activities 
for the input units together with the desired pattern of activities for the output units.

2. We determine how closely the actual output of the network matches the desired 
output.

3. We change the weight of each connection so that the network produces a better 
approximation of the desired output.
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Calculating the forward path:

𝑜𝑢𝑡3- =
-

-12!"#*%
= -

-12!&.+,-( = 0.7264

𝑜𝑢𝑡3. =
-

-12!"#*(
= -

-12!%.%.%/ = 0.7598



Calculating the total error: 

𝐸89:;< = ∑ -
. 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 . = -

. 𝑡𝑎𝑟𝑔𝑒𝑡1 − 𝑜𝑢𝑡3- . + -
. 𝑡𝑎𝑟𝑔𝑒𝑡2 − 𝑜𝑢𝑡3. .

𝐸89:;< =
-
. 0.2 − 0.7264 . + -

. 0.8 − 0.7598 . = 0.1385 + 0.0008 = 0.1393

𝐸3- = 0.1385

𝐸3. = 0.0008
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Calculating the backward pass and update weights:

How much a change in 𝑤4 affects the total error:

=>01234
=5.

= =>01236
=3?8*%

×
=3?8*%
=@A*%

× =@A*%
=B.

Gradient Descent

Eo1=½(target-output)2
ETotal=EO1+EO2OutputInput

O1

w5
OUTH1

OUTH2



𝐸89:;< =
-
. 𝑡𝑎𝑟𝑔𝑒𝑡3- − 𝑂𝑈𝑇3- . + -

. 𝑡𝑎𝑡𝑔𝑒𝑡3. − 𝑂𝑈𝑇3. .

=>01236
=3?8*%

= 2× -
.
𝑡𝑎𝑟𝑔𝑒𝑡3- − 𝑂𝑈𝑇3- × −1

=3?8*%
=@A*%

= 𝑂𝑈𝑇3- 1 − 𝑂𝑈𝑇3- because 𝑂𝑈𝑇3- =
-

-12!781%

Finally, 𝐼𝑁3- = 𝑤4×𝑂𝑈𝑇,- +𝑤5×𝑂𝑈𝑇,. + 𝐵.
=@A*%
=B.

= 𝑂𝑈𝑇,-

Putting them all together: 
=>01236
=B.

= − 𝑡𝑎𝑟𝑔𝑒𝑡3- − 𝑂𝑈𝑇3- ×𝑂𝑈𝑇C- 1 − 𝑂𝑈𝑇3- ×𝑂𝑈𝑇,-
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Alternatively, we have =>01236=3?8*%
and =3?8*%=@A*%

which can be written as =>01236=@A*%
, aka 𝛿3-

To decrease the error, 𝑤4∗ = 𝑤4 − 𝜂×
=>:9:;<
=B.

𝑤4∗ = 𝑤4 − 𝜂×
=>01236
=B.

= 0.6 − 0.5×0.578 = 0.5711
𝑤5∗ = 0.2197
𝑤6∗ = 0.5520
𝑤7∗ = 0.6021
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ETotal=EO1+EO2
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Eo1=½(target-output)2OutputInput

H1

w1
OUTH1

OUTH2 Eo2=½(target-output)2

=>01236
=B%

= =>01236
=3?8$%

× =3?8$%
=@A$%

× =@A$%
=B%

=>01236
=3?8$%

= =>*%
=3?8$%

+ =>*(
=3?8$%

=>01236
=B%

= =>*%
=3?8$%

+ =>*(
=3?8$%

× =3?8$%
=@A$%

× =@A$%
=B%



=>01236
=B%

= =>*%
=3?8*%

× =3?8*%
=@A*%

× =@A*%
=3?8$%

+ =>*(
=3?8*(

× =3?8*(
=@A*(

× =@A*(
=3?8$%

× =3?8$%
=@A$%

× =@A$%
=E%

=>01236
=B%

= ∑ 𝛿3×𝑤F9 × =3?8$%
=@A$%

× =@A$%
=B%

𝑤-∗ = 0.3493
𝑤.∗ = 0.1464
𝑤/∗ = 0.1997
𝑤0∗ = 0.3987

*Check the matlab code for detail steps and calculations!!
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In machine learning, the delta rule is a gradient descent learning rule for updating the 
weight of the inputs to artificial neurons in a single-layer neural network.

Δ𝑤GH = 𝛼 𝑡H − 𝑦G 𝑔I ℎH 𝑥G
where

𝛼 is a small constant called learning rate
𝑔 𝑥 is the neuraon's activiation function
𝑡H is the target output
ℎH is the weighted sum of the neuron's inputs
𝑦H is the catual output
𝑥G is the ith input
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• Deep learning: a neural network has more than two hidden layers. 
• A multistage information-distillation operation.
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§ Tens of thousands of machine learning algorithms

§ Hundreds new every year

§ Every machine learning algorithm has three components:

– Representation

– Evaluation

– Optimization
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§ Decision trees

§ Sets of rules / Logic programs

§ Instances

§ Graphical models (Bayes/Markov nets)

§ Neural networks

§ Support vector machines

§ Model ensembles

§ Etc.
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§ Accuracy

§ Squared error

§ Likelihood

§ Posterior probability

§ Cost / Utility

§ Margin

§ Entropy

§ Etc.
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§ Combinatorial optimization

– E.g.: Greedy search

§ Convex optimization

– E.g.: Gradient descent

§ Constrained optimization

– E.g.: Linear programming
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§ Supervised (inductive) learning

– Training data includes desired outputs

§ Unsupervised learning

– Training data does not include desired outputs

§ Semi-supervised learning

– Training data includes a few desired outputs

§ Reinforcement learning

– Rewards from sequence of actions
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§ Supervised learning (                                        )
– Prediction
– Classification (discrete labels), Regression (real values)

§ Unsupervised learning (                          )
– Clustering
– Probability distribution estimation
– Finding association (in features)
– Dimension reduction 

§ Semi-supervised learning
§ Reinforcement learning

– Decision making (robot, chess machine)
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Learning System Model

Input Samples Learning 
Method

System

Training

Testing
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Genetic Algorithm



Introduction

Inputs Outputs

Reverse Engineering

Artificial Intelligence: 

Capable of  human-like 
qualities 
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EA attempts to simulate the process of evolution. 

Understanding the system (e.g., human brain)

The driving force behind the creation/evolution

Evolutionary Algorithm (EA)
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Charles Darwin: Natural Selection
- Huge lizards, strange birds and Giant Tortoises Galapagos Island.

The Discovery of Inheritance

History (Inheritance)

Factors were inherited in 
pairs, one from each parent 
plant. 

T is dominant and S is 
regressive



The Discovery of Chromosomes and DNA (1903)

Mutation (1920’s): one of the driving forces of evolution. 
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GA: Artificial version of Biological Evolution, allowing the fittest to survive while killing 
off the weakest.
v Stochastic optimization technique 
v Ability to escape from local optimal solutions (Gradient methods do not have this 

property.) 
v The algorithm consists of:

a) coding the problem
b) generating an initial population 
c) evaluating fitness
d) crossover (breeding) and 
e) mutation
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Solve: max 𝑓 𝑥 , 𝑓 𝑥 = 20 + 100𝑥 cos 4𝜋𝑥 𝑒J.K 𝑥 ∈ 0,1.5
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§ Selection: Selection of fit individuals for reproduction 
§ Crossover: Mating of selected individuals for reproduction 
§ Mutation: Introduction of new alleles into chromosomes in the population, to create 

completely new solutions 

Procedure of GA

i. New population is produced by mating the best 
individuals

ii. Over generations, desirable characteristics are 
spread throughout population 

iii. Mutation is used to escape from a local minimum 
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Generate randomly initial population of N (=10) chromosomes. (required precision: 3 
decimal points)
Note: Population size 2L; n=number of don’t care genes
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Calculate fitness values for the chromosomes:
𝑓 𝑥 = 20 + 100𝑥 cos 4𝜋𝑥 𝑒J.K , 𝑖 = 1,2, … 10

Evaluation Fitness Page 47 of  56



§ Crossover: Exchanges some genes of the two parents to create the genotypes of the 
offspring 

§ Method: Select points along parents' chromosomes (randomly) and exchange genes 
between these points
Note: In Simple Crossover , only one point is chosen. See Figure 
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Introduces completely new alleles into a population of chromosomes Creates completely 
new solutions (avoids stagnation)
Method: Select one or more genes in an individual at random and change their alleles
Note: Allele change itself can be random or deterministic fashion 
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Select N chromosomes in the next generation (t+1) from N chromosomes in the current 
generation (t). Compute the probability of 𝑥G being selected:  𝑃 𝑥G ≔ M K"

∑9:%
%& M K"
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Crossover: Exchange some genes of two parents

Mutation: Exchange some genes of two parents
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The End!!


