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Representation of the input-output relationship ot a physical system.

Input Physical Output
N System

Acceleration Car Position

> Voltage Circuit Current >

Deposit Bank Account Balance
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear



Continuous-time and Discrete Time

Input/output vectors are continuous-time signals

{U(t)}teR

{u[k]}k:ez ®

System >

" Discrete-time system

R Real numbers ®
Z, Integers

" Input/output vectors are discrete-time signals

Page 4 of 26



et

" Continuous-time system G
. géx ub(\/

— Mass-spring-damper system

K B
My"(t) = f(t) = By'(t) — Ky(t) ______
— RLC circuit
v(0) = Ri(0) + L2921 11 0y f(t) Y(t)
Y
W V(t) i R 3
" Discrete-time System L C
— Digital computer éﬁ’&\/g{
Qoa&' >0,~\ u[k] : deposit/withdrawal

WW\’\ﬁgd 2 > je\‘y a : interest rate
¢
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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Memoryless system: Current output depends on ONLY current input.
Causal System: Current output depends on current and past input.

Noncausal system: Current output depends on future input.
J\_\/M\/\_\/

past | future System pas:t ‘ future

current current
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" Memoryless system

v,
— Spring: input f{#), output x(?) = [/(\52 = kx (Qg

— Resistor: input »(?), output 7(2) = v(t) = Ri(t)

= (Causal System

— Input: acceleration; output: position of a car

Current position depends on not only current acceleration, but also all the past accelerations.

" Noncausal System does not exist in real world; it exists only

mathematically. (We only consider causal systems)
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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For a causal system,
(Current/future input)

(past input) } Current/Future output

To Memorize this info, we use a state vector x(7;)

t,. current time
, x(%y) o
System

Lumped system: State vector is finite dimensional
Distributed system: State vector is infinite dimensional
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* Lumped System

1 meter
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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x(to)

For a causal system, u(),t > to

} =2 y(t),t =t

Time-invariant system: For any time shift T,

x(tog+T) }
— >
u(t=T),t >ty +T PyE-T)tzt+T

Time-varying system: Not time-invariant

m(to);/‘\u(@ N v
to ——— System |—— to
g;(to+T):/-\u/(t 7 [\y(t/— T)

to to+T tO tO_I_T
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= (Car, Rocket etc.

il

S

If we regard M to be constant

(even though M changes very
slowly), then this system is
time-1nvariant.
My"(t) = u(t)
(Laplace applicable)

=il

-

If we regard M to be Changing
(due to fuel consumption),

then this system is
time-varying.

M(t)y" (t) = u(t)
(Laplace not applicable)
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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i

For a causal system, ﬂ: cexn) 0 =X,
x; (to) . ' _x
2>y (t),t =>ty,i=1,2 AV=X2
= 2
Linear system: A system satisfying W N =X tXLy
a1x1(tg) + azx,(t CA(tX2)= W)
1%1(to) 2 2(>0) }_)alyl(t) + ayy, (D), ,{'/J3 g ( ‘f) 3
aju; + azuy(t),t =t p @ A’ €(§£7 ﬂ- ! Nj\:‘ﬂ/
tZtOV(Zl,azE]R{ A% on' Uz > o

. . .. = 1 +\ Vv
Nonlinear system: A system that does not satisty superposition property. 3‘ > X

o = 21

j;fx. x=st. = Y= 54 e
x:%z = 52':5-12 X = Ly +X2
X = Dty = ﬂ= 5CAtXy) A Y 9= 5 (o1t )+
bt B = Y Yy BNSX, T =S e
¥ 'ﬁ\"—y;: Eotit1 +

&L S

= g3lt+§)¢i fZE>



f(t) =Ky(t)=> This linear relation holds only for small y(?) and £{?)
* However, linear approximation 1s often good enough for control purposes

= Linearization: approximation of a nonlinear system by linear system around some

N~ T "
Op cr atlng pOlﬁt
— Se———

7/ 4

L\~E
(
|




State Space Model



Linear State-Space ! 1'Vlodels
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* 2 20/ il y s A
\qé/"' XV\# f\g(y'wb o\)g@w‘eew
Contmuous time 61 ‘)3 _ Cﬂ[’ Discrete-time N

dx(t) / A
|29 = A0x(©) + BOu®) © { x[k + 1] [k]x[@ + B[k] [k] v e
3(0) = COX@) + DOu() B xlid $DIkIulk] petyy
LMQ i = oDy s
t € R (Real numb\sg) k €Z (Integerwew‘ BV yipe —15
gu+ < % ny -~
/7 ogt”’lo X: state vector B *’% ’_“,Jl: ’/ l}rﬂ
/\ W u: input vector A b

\V\ Q1\’\O\6 y: output vector Ggr"“‘{h AWL 9\0 ck Dt&ﬁ(\w/‘“

o e fee e

) System |___ | System |__

u y u y
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" The first equation, called state equation, is a tirst order ordinary differential (CT case)

and difference (DT case) equation. m - Ax+Bu
* The second equation, called output equation, is an algebraic equauoj C A +Pw-
= Two equations are called state-space model. k
" [f asystem is fzme-invariant, the matrices A, B, C, 9 are Sc/)_rlst/ant (in\d/equm:l;n{_gf

)
" Pay attention to szges of matrices and vectors. They must by always compatible!
~—~———
Lt = ecs
1 - N \& \//./‘
L
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Consider a general #th-order model of a dynamic system:

d™y(t) d™*ty(t) dy(t) d™u(t) d™tu(t)
+a ot @y =t agy(t) = by by o

diin n—1 dtn_l M ‘
b1 Zit) + b()U(t) M\/O - I 9’“/(1‘ W‘é’h grder dt(gwbw7
Assuming all initial conditions are all zeros. ( ey tion

Lep of Ce/eféiﬂ SYqbem cqutton = Lenge gl)a(( raeded

AL
L [5é o/QJeI‘ lr‘ﬁ[el@f‘{'"‘”é e usr

o derive a systematic procedure that transforms a differential equation of order 7 to

a state space form representing a system of # first-order differential equations.

Gpke proed . o = Aot tPU - 5t orer L fleremtiak egutten

e
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beh oder N L WO ron
Consider a dyn:;?qic system represented by the following differential equation: eyt

1 6y 02y 1y ® 5y s 3y 7D s gy D s
where y® stands for the #th detivative: Y = dly/dt. Find the state space modelof the
above system.

07 X =A%
—p )| o o 0 0O 7 0 U;c:r{f()z{ :
\‘ 0 0 | ©o o © _ 0 ) Ulw}vwr
A6x6 B 0 0 0 \ 0 V) %{X\’ Q %“‘7’“'(
o 0 o o ' 0 0 X B ,C 1V
o 0 o 0 O | \ ‘ e
L2 5 -1 0 2 b - q é/lw
\/\/\/\QJ mﬁ?ﬁf mb( (
Ch‘{"téf | 5 T 5 Dl D/[o} %W\’); CHDL’\' Dl/(
EI
\ VVUQ&MW;(,
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o = AxtBu
" By Newton’s law, we have iF'/ AMLE) = ﬂl(fl M{\_ﬂ(” Z? -)2) ‘j CoAt
M3(t) = u(t) - I 3 Wee) 1 [ ] g;)) ul ‘
#: input force &&6)
_J: output position ALLE) = Mj ) " - (1)

= Define state variables: x4 (t) = y(t) Xy = y(t) Wf) M 4’“_‘7) \5,

Lﬂif; J- [ 33(3] B | {f,:)féc e

u The

(%1(t) = 91 () = x,()
%2(8) = J() = gul®) S
L y(t) = x,(¢)

A




Kyce) M( )
= By Newton’s law j’ \
—

My (L) = u(t) - By(t) ky(t) )

t)y - £ 1= AxtBU
g({) Ik ﬂtt ‘W iﬂ’ﬁ%‘(’pd
CE{W

_ To | '.ﬂ
x‘;g)v_"y%iﬁ(t) _Ly(i)ljﬁ)] ) Lﬁ@%&% *
zz[ocl]:[ffm 3% W=0s0] K
( jﬂo ) Tl
d 1 71[x(t)
dt li;ﬁii] - [—K/M —B/M. KZ(@] i [1

A

& yo =11 oW
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" 4(1): input voltage M Y. LW

" y(?): output voltage
= By Kichhhoff’s Voltage law

u(t) = Ri(t) + LE2 + < [i(n)dr 21\
Vot
Define State Variables (current for inductor, voltage for capacitor):
T —

x1(t) = i(t), xo(t) = —fl(T)dT |
A

( ) R/L -1/L
dt [92(2)] [ 1/C 0 /J [j/éju(t)
x1(t) _f

— @

A




dhe End!!



