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= A system is assumed to be at rest (zero initial conditions),

» A transfer function is defined by

Laplace transform of system output
— P y P

C
G(s): = 8

™~ Laplace transform of system input

R(s) —  Gs) > C(s)
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Note: input, system and output into three separate and distinct parts.

A general nth-order, linear, time-invariant differential equation:

d™c(t) d"1c(t) d™r(t) d™ 1r(t)
anW + An-1 i1 + -+ aoc(t) = bm drm m—1 drm—1

+ -+ bor(t)

where ¢(7) 1s the output, 7(?) is the input.
Assume: zero initial conditions, and take the Laplace transform on both side:
(a,s™+a,_1s" 1+ +ag)C(s) = (bys™+ apy—15™ L+ -+ ag)R(s)

C(s) _ (bms™ + am-15™"" + - + ap) G(s) = ¢(s)
- R(s)  (ans™+ ap_1s™ 1+ -+ ay) = R(s)

C(s) = R(s)G(s)
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d:i(tt) + 2c(t) = r(t), and use the result to find

the response ¢(t) to a unit step input with zero initial conditions.

Find the transfer function represented by
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One of the most important math tool in the course!

Definition:

For a function f(t) (f(t) =0 fort = 0)
F(s) = L{f(£)} = f f(t)e=tdt (s complex variable)
0

F(s) is denoted as the Laplace transform of f(t)

N C\ F(s)

» T

fO)
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Allow us to find f(t) given F(s):
-1 — 1 oHe St —
L7HF(s)] = 2] L_joo F(s)estds = f(t)u(t)

where

u(t)={1' t> 0

0, t<O0
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Transform an ordinary differential equation (ODE) into an algebraic equation (AE).

t-domain s-domain
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Laplace Transform Table

No.

1
2

f(t)
5(t)
u(t)

tu(t)
t™u(t)
e~ %u(t)
sin wtu(t)

cos wtu(t)

L

I

1:—-1

S

F(s)
1
1
s
1

2

S
n!
gn+1

S+ a

s2 4+ w?

s2 4+ w?
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Item no. Theorem Name
. [LFE)]= = [ f (B)e*tdt Definition
2 Zkf (¢ )] = kF ( ) Linearity theorem
3 Zfi®)+ f2(¢t)] = Fi(s) + F> (s) Linearity theorem
4. ZLle®f(t)] =F(s+a) Frequency shift theorem
5 LfE-T)] =e*F(s) Time shift theorem
6. ZLf(at))=1F(2) Scaling theorem
7 & -%J = sF (s) — f(0—) Differentiation theorem

8. L -%- = s?F (s) — sf(0—) — f(0—) Differentiation theorem

9. ¥ cg—: Z s"Fk f*=1 (0—) Differentiation theorem
[ ot F(s) :
s (e S b I R dT] = = Integration theorem
1.  f(o0) = lir%sF (s) Final value theorem?
88—

12.  f(0+) = limsF'(s) Initial value theorem?2
§—00
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Partial-Fraction Expansion: To convert the function to a sum of simpler terms.

E.g.,
F(s) s34+ 2s°+6s5s+7
S) =
s“+s+5
Partial-Fraction Expansion ) Reminder:
I F(s)=s+1+ Order of the numerator
S g +s+5 less than its denominator
£ \
2
t) = L7Ys} + L7{1 +L—1{ }
m— f(0) = L5} + LTI+ LT



3 Cases (Roots of the Denominator)

1. Real and Distinct

2
(s+1)(s+2)

F(s) =

2. Real and Repeated

2
(s+1)(s+2)2

F(s) =

3. Complex or Imaginary

3
F(S)  S(s2+25+5)

_ K K;
F(S) T (s+1) t (s+2)

_ K K;
F(S) T (s+1) t (s+2)2

K25+K3

_ K
F(S) s +SZ+ZS+5

(s+2)
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Differentiation Theorem: L {3—{} =sF(s) — f(0), L {ﬂ} = s%F(s) —sf(0) — f'(0),

dt?
atfl _ on _\n n—-k fk=1/0)\.
L{ dtn} =S"F(s) — Xk—1s"7" f77(0),

Example: Given the following differential equation, solve for y(t) if all initial conditions
are zeros.

d2f  d
d—t]; 4 2% + 4y(t) = 4u(t)
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/////////

:H: 0(t)
SORL

friction between
/ bob and air
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I;(s)
Vi’

Given the network below, find the transfer function

v ()

Ry

—AW\ AM—

i1(1) i2(t)

— vc ()
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Assume the TF of a SISO system 1s as follows:

mST+by_1S™ 1+---+b;s+b,

— where m<n
s"tanp_1s""t+---t+a s+ag

G(s) =2

Then its state-space model can be written below:

- 0 1 0 oo 0
x = Ax + Bu 0 0 1 0
where A =| : : B 0 >
y=Cx+Du 0 0 0 1
—Qp —aq4 —Aap —An-1,xn
0
0
B = : ,C=1[by by bm  0lixn, D = [0]
|11
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2s% + 55+ 3
3s3 4+ 7s2 —6s+1

G(s) =

Please find its state-space model.

25243541
3°_ '3

G(s) = 7 (third-order system)

3,72 1
S +3$ 2$+3

x = Ax + Bu
Its state-space model: y = Cx + Du
0O 1 O 0
A = 0 0 1 ’B= O])C:[l E E],D=[O]
1 3 3
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Assume the state-space model of a system is as follows:

x = Ax + Bu
y =Cx+ Du

Take the Laplace Transform assuming zero initial conditions
sX(s) = AX(s) + BU(s)
Y(s) =CX(s)+ DU(s)

Solving for X(s) in above equations

X(s) = (sI — A)7'BU(s) where I is the identity matrix
Substitute it to y = Cx + Du™>
Y(s) = [C(sI — A)~ 1B + DJU(s)
Y(s)

G(s) = U0 =C(sI—A)™'B+D
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0 1 0 10
x=10 0 1 |x+]10|u
-1 -2 -3 0

y=[1 0 O]Jx+0-u
Please find its transfer function.

G(s)=C(sI—A)'B+D

1 0 0 0 1 OoON 1o
=[1 0 o]<so 1 0—[0 0 1]) 0 |+ [0]
0 0 1l l-1 -2 =3 0
s =1 0 17'r110
=[1 0 o][o 2 -1 0 |+ [0]
1 2 s+43 0
_ 105%+30s+20

"~ s3+43s242s+1



dhe End!!



